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The  pape r  inves t igates  the s t r e s s - s t r a i n  s ta te  of an a x i s y m m e t r i c a l l y  loaded shel l  which 
a r i s e s  when a s t rong e lec t r ic  cur ren t  flows in it. The  shel l  with cur ren t  is an e lement  of a 
s y s t e m  intended for  focusing ~r and K mesons  in neutron exper iments .  The p rob lem is solved 
by  numer i ca l  in tegrat ion on a compute r  of equations of the theory  of shel ls  by the two-s ided  
m a t r i x  run- through method, and also by an approx imate  analyt ical  solution. The a lgor i thm 
being applied can be  used  to calcula te  an a r b i t r a r y  shell  of revolut ion of va r i ab le  th ickness .  
The  r e su l t s  thus obtained a r e  d iscussed .  

In invest igat ions of h igh-energy  phys ics ,  s y s t e m s  of cu r r en t - ca r ry ing  shel ls  a r e  used  to f o r m  pa r t i c l e  
beams .  Such s y s t e m s  usual ly  const i tute  a collection of shel ls  of revolut ion subjected to impuls ive  e lec t r i c  
cu r ren t  of hundreds of k i l oamperes .  

In [1] a s y s t e m  consis t ing of cu r ren t  pa rabo l ic  lenses  [2] is p roposed  f o r  the focusing of ~r and K m e -  
sons  in a neutron exper iment .  F o r  the p a r a m e t e r s  of this s y s t e m  the p r e s s u r e  of the magnet ic  field of the 
cur ren t  amounts  to s e v e r a l  hundreds of a tmosphe res ,  and in the  case  of a smal l  th ickness  of the shell  the 
mechanica l  s t r e s s e s  can be v e r y  high. 

A parabo l ic  lens in the gene ra l  case  is a body of revolution with a va r i ab le  wall th ickness  (Fig. 1) 
loaded by an a x i s y m m e t r i c  magnet ic  p r e s s u r e  which is vary ing  with t i m e  and is inhomogeneous in spaae.  
The lens cons is t s  of two parabolo ids  of revolut ion 1, joined at the v e r t i c e s  via  a construct ional  neck 2, 
f langes  3, and a coaxial  cu r ren t  c a r r i e r  4 with cur ren t  I 0. In the case  being cons idered  the th ickness  of its 
wal ls  h vary ing  over  the lens is cons iderab ly  less  than the cha r ac t e r i s t i c  radius of cu rva tu re  R of the s u r -  
face,  while the f requency  of natural  v ibra t ions  of the lens exceeds the f requencyof  cur ren t  var ia t ion.  Inview 
of this, fo r  the descr ip t ion  of the s t r e s s - s t r a i n  s ta te  we will p roceed  f r o m  the s y s t e m  of equations of the 
theory  of shel ls  of revolut ion for  a s ta t ic  na ture  of the load (see, for  example,  [3]). 

An exact  analyt ical  solution of the s y s t e m  is known only for  ce r ta in  pa r t i cu l a r  types  of shel ls  [4]. To 
solve the problem,  two methods a r e  used  below: a numer i ca l  solution of the comple te  s y s t e m  of equations 
of the shel l  theory,  and an approx imate  analyt ical  solution. 

1. The sy s t em  of equations for  a shell  of revolution loaded by an a x i s y m m e t r i c  p r e s s u r e  has the fo rm [3 ] 
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where E is modulus of elasticity; p is Po i s son ' s  ratio; T1, T2, M1, M 2 a re  forces  and moments  per  unit 
length, 

h/2 h,,'2 hi2 hi2 

--h~ 2 --h/2 --hi2 --hi2 

al and a2 are  the meridional  and c i rcumferent ia l  s t resses ;  ~ a re  the coordinates ac ros s  the thickness of 
the shells f rom its middle surface;  (~ = h / 2  corresponds to the inner surface of the shell, ~ = - h / 2 - e e  cor -  
responds to its outer surface); u and w are  the displacements  of points of the middle surface 'in the mer id-  
ian and normal  directions; Q1 is the shear  force  per unit length; R 1 and R 2 a re  the radii  of curvature  of the 
middle surface;  0 is the angle coordinate along the meridian.  The positive directions of the forces ,  moments,  
and displacements are  shown on the element of the shell (Fig. 2); Pn is the p re s su re  of the magnetic field, 
normal  to the outer  surface of the shell; it is given by the expression 

p~ = 10~(1 / 2n)Io~r -~ (1.2) 

Pn in kgf /cm 2, I 0 is the amplitude value of the current  in mA, r is the current  radius of the paral le l  of the 
outer  surface  of the shell in cent imeters .  

The problem can be reduced to the solution of six ord inary  differential equations with var iable  coef-  
ficients in the ease of two--point boundary conditions - with three  on each edge of the paraboloidal port ion 
of the lens. F o r  the numerica l  solution of the boundary-value problem whose homogeneous differential  equa- 
tions have, along with decreasing solutions, rapidly increasing solutions (as a rule, problems of the shell  
theory  belong to them), we use the run- through method. One of the possible and most effective var iants  of 
it - the two-sided matr ix  run- through method [5, 6] - was used to solve the given problem. 

The essence  of the method consists  of the following. The t o t a l v e c t o r X o f 2 n  sought functions, cha rac t e r -  
izing the state of an a rb i t r a ry  section of the system, is divided into two vec tors  :gi and X 2 with n functions 
in each. At each point s of the interval  of integration (so, Sk), between the vec to rs  :X 1 and :K z we can find two 
l inear relat ions 

Xl(s) = L~(s)X~(s) § Rz(s) (i = 1, 2) (12) 

where Li(s)  are  square (nx n) mat r ices ,  and Ri(s) a re  vectors  of n coefficients.  I-i(s) and Ri(s)  a re  de ter -  
mined by integration f rom s0to sk(dS > 0, i =1 )andf rom skto  s0(ds < 0, i = 2 ) o f  the correspondingdifferent ia l  
equations, obtained, for  example, in [7] for  a variant  of one-sided run- through method, with the initial con- 
ditions following f rom the fixing conditions of the edges. By this the left and right boundary conditions a re  
t r ans f e r r ed  to all points s of the interval of integration, with the geometry  of the portions, respect ively,  on 
the left and right of s and the external  load applied to these sections taken into account. In this manner  the 
direct  run- through (i = 1) and r e v e r s e  run- through (i = 2) are  accomplished. 

The physical  meaning of L i and R i depends on the choice of the vec to rs  ][1 a n d X  2. Thus, for  i = l ,  
if X 1 is a displacement vector  and X 2 is the vector  of internal  fo rce  quantities, then 1.~ is a flexibility mat r ix  
of the part  of the sys tem f rom s o to s, while R 1 a re  displacements of the sec t ions  caused by the load applied 
on the left f rom it. Conversely,  if X 1 is a vec tor  of fo rce  quantities and g 2 is a displacement vector ,  then 
]h 1 is a st iffness matrix,  while R 1 a re  the force  quantities in the section s caused by the load applied on the 
left of s. In the case of a mixed content of the vec to rs  X 1 and X 2 different components of the mat r ix  lh 1 and 
the vector  R~ will have a different physical  meaning. 

The choice of the vec tors  If1 and X 2 is determined by the fixing conditions of the boundary s = s o f rom 
which we s tar t  the solution of the problem; in part icular ,  the n functions specified on this boundary a r e  in- 
chided in the X 1 vector .  During the r eve r s e  run- through the content of the vec tors  X 1 and X 2 remains  the 
same, since after the forward run- through to the boundary s = s k all 2n sought functions a r e  determined.  
F o r  the r e v e r s e  run- through we can formal ly  use  in the role of initial condition those n conditions of them 
which for  s = Sk completely define the vector  X 1. A simultaneous solution of Eqs. (1.3) obtained during the 
direct  run- through ( i=l)  and the r e v e r s e  run-through (i=2) gives the sought values of Xl(s) and X2(s) at any 
point s of the interval  (So, Sk). 
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We next consider  in the genera l  fo rm an application of the given method for  the calculation of com-  
posite constructions;  this is neces sa ry  for  the calculation of joined shells of revolution. We assign, in the 
zone joining the two parts ,  the index 1 to the left par t  and the index 2 to the right part  of them (upper indices). 
Then the joining conditions of the two par ts  can be represented in the fo rm 

M+X(1) = X(m ( 1 . 4 )  

M-X (z) = X (1) (1.5) 

where X (1) and X (2) a re  the complete (2n) vec tors  of state of the joining section; M + and M -  a re  square  
(2n• 2n) t ransformat ion mat r i ces .  The express ions  (1.4) and (1.5) constitute the equations of equilibrium 
of an element of the joint and the continuity of s t ra ins .  It is obvious that 

M+M - = M - M  + = I ( 1 . 6 )  

where  I is a unit (2n• 2n) matrix.  

Carrying out a forward  run-through,  we have at the joint, fo r  the par t  1, the relat ion 

Xl (I) = Lx(1)X~ (1) -4- Rx (1) (1.7) 

which must  be t ransformed by means of (1.4) or (1.5) into 
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Xx~ ~) = L~ (z) X~ (2) + R~ (z) (1.8) 

f o r  the pa r t  2. T he  t r a n s f o r m a t i o n  (1.4) is  wr i t t en  in the f o r m  

Mll+X1 (1) + MI~+K~ (I) = X1 (2), M2t+X1 (1) @ M ~ + X ~  (1) --~ X2 (2) (1 .9 )  

w h e r e  Mik+ a r e  s q u a r e  (n• n) b locks  in the  m a t r i x  u + .  Subst i tut ing (1.7) into (1.9), we obta in  

X1 (~) = [Mll+Lt (1) + MI~ +] [M~I+L1 a) + M~2+I-1X~ (~) --~ Mn+R1 (1) -- [Mn+L1 (I) + M12 +] [M21+L1 (1) + M~z+] -t M~x+R~ (~) (1.10) 

A c o m p a r i s o n  of (1.10) with (1.9) g ives  

L i  (~) ~_ [Mt i+L ( i )  + Ml~ +] [M2i+Li (l) + M22+] -1 

Ri (z) = [M,i + - -  Li(~)M~, +] R1 (1) (I .II) 

If we use the joining conditions in the form (1.5), then for Li(2) and Ri(2) we have 

L i  (2) = - -  [ M l i -  - -  L ( i ) M ~ l - ]  - i  [M,~-  - -  Ll(1)M22- ] 

R1 (~)= [Mli- --  Ll(i)M~l-] -i R1 (i) (1.12) 

w h e r e  Mik-  a r e  s q u a r e  (nx n) b locks  in the  m a t r i x  M- .  The  e x p r e s s i o n s  f o r  ~ 2 6 )  and R2 (1) f o r  t r ans i t i on  
f r o m  the  p a r t  2 to the p a r t  1 dur ing the r e v e r s e  r u n - t h r o u g h  can  be  obtained analogously ,  o r  f r o m  e x p r e s -  
s ions  (1.11) and (1.12), r ep l ac ing  the  index of f o r w a r d  r u n - t h r o u g h  1 of L i and R i  by the index of r e v e r s e  
r u n - t h r o u g h  2 (lower indices) .  We obtain 

L~(1) = __ [ M l l  + - -  L~(~)M~i+] -i [M12 + - -  L2(2)M~2+l 

R(i) = [Mn + .__ L (~)M~l+ ]-i R~(~) (1.13) 

L~ (1) ~ [ M l I - L .  (~) -~ - ~  (2) . M,~-] [Mz, ~ + M ~ - ]  - i  

R~ (~) = Ibid,--- L~(~)M2t -1 R~ (~) (1.14) 

F r o m  e x p r e s s i o n s  (1.11)-(1.14) we  s e e  that f o r  L i and R 1 dur ing  the  f o r w a r d  and r e v e r s e  r u n - t h r o u g h  
we can u se  e i ther  e x p r e s s i o n s  ~ of ident ical  f o rm,  whose  b locks  ~ i k  of  the s a m e  t e r m  belong to different ,  
mutua l ly  i n v e r s e  m a t r i c e s  M + and M - ,  o r  e x p r e s s i o n s  of d i f fe ren t  f o r m ,  but with the  u se  of b locks  of only 
one of the m a t r i c e s  ~ +  or  M -  f o r  both p a s s a g e s .  By m e a n s  of r e l a t ions  (1.11)-(1.14), by the method of two-  
s ided run - th rough ,  we  can  ca lcu la te  c o n s t r u c t i o n s  f o r m e d  f r o m  an a r t i b t r a r y  n u m e r  of jo ined  p a r t s .  

Thus,  in the me thod  of two-s ided  m a t r i x  r u n - t h r o u g h  the solut ion of the o r ig ina l  bounda ry -va lu e  p r o b -  
l e m  is r educed  to the solut ion of four  Cauchy p r o b l e m s  fo r  Lt (s ) ,  R 1 (s) and L2(s), R2(s),  which  a r e  so lvable  
in  p a i r s  on the  left  and on the r igh t  of the in te rva l  (So, Sk) with the c o r r e s p o n d i n g  ini t ial  condi t ions .  No 
rap id ly  i n c r e a s i n g  funct ions  wil l  a r i s e  in any of the p r o b l e m s ;  this  can  be  shown in each  c o n c r e t e  case .  

The  advantage  of the method  of two- s ided  run- th rough  in c o m p a r i s o n  with the method  of usua l  r u n -  
t h rough  [7] c o n s i s t s  of the fac t  that  the d i f fe ren t ia l  equat ions  f o r  L i  and R i ( i = l ,  2) a r e  in tegra ted  on the 
left  and on the r igh t  of the in te rva l  (So, s k) independently;  t h e r e f o r e ,  the coeff ic ient  m a t r i c e s  L i and R i a r e  
not s t o r e d  on each s tep of  in tegra t ion ,  but only  at the points  fo r  which we have to obtain the  solut ion Xl, X 2. 
As a resu l t ,  the volume of the m e m o r y  of the c o m p u t e r  being used  is subs tan t ia l ly  r e d u c e d .  

2. To r e a l i z e  the method  jus t  descr ibed ,  p r o g r a m s  w e r e  se t  up which w e r e  su i tab le  f o r  the c a l c u l a -  
t ions  of  an a r b i t r a r y  shel l  of r evo lu t ion  of va r i ab l e  th ickness ,  and she l l s  jo ined toge the r .  The  p r o g r a m s  f 
w e r e  wr i t t en  in FORT RAN fo r  a BESM-6  compute r .  The  d i f fe ren t ia l  m a t r i x  equat ions  fo r  L i and R i  w e r e  
in t eg ra t ed  by the  R u u g e - K u t t a  method.  The  ini t ia l  s y s t e m  of equat ions (1.1), t r a n s f o r m e d  into a fundamen-  
ta l  s y s t e m  of s ix  d i f fe ren t ia l  equat ions  of the f i r s t  o r d e r  ( a x i s y m m e t r i c  p rob l em,  n = 3 )  in a mixed  fo rm,  
when b rough t  to a d i m e n s i o n l e s s  f o r m  is wr i t t en  as  

d~* _ .  B0 no _ w o ( ~, no ) 
ds" = 1'1 - B -  - -  u~ ~ ctg 0 , ~  + ~t 

I 

dw~ ~ 1  + o Ro d b ,  Do Ro 
d s *  U - ' ~ 1 '  d s  ~ = Ml~ ~ - -  ~,i~ ~ ctg 0 

dT1 ~ Ro 
dso = --  Tl~ --  bt) -B-~(ctgO 

d Q 1  ~ ~ o R o  . . 
dso -- - -  (J1 - - ~ c L g v - -  T, ~ 

dMx~ = - -  M ~  (1 
ds z 

(RR_~2o) B / Ro \ 2 .  + t2,̂  o ~Ro + u o ( t -  ~ ) ~ B  z ctg 20 -}- w* (i --  ~ )  ~ 1"-~'~ ) ctg 0 - -  q0 ~ 

_hi_1 + ~ . _ ~ _ a ,  no _ ~o( l_  ~2) - ~  \ ~ 2 B  (n0/~ctg0_ wo(l_ ~ ) ~ / _ ~  ) +qo  

Ro 1 D I R o \ ~ -  . ~ .  
- -  ~)--~-ctg0 + Ql~ + @l(t - p~) -~-o/-~-2 ) c~g t* (2.1) 
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or  in the mat r ix  fo rm 

d X / d s  ~ ~- FX + G (2.2) 

In (2.2) X is a complete (2n=6) vec tor  of sought functions, with 

= . 

~1 LMl~ 

where 1P is the mat r i x  of var iable coefficients, and {] is the vector of 
load functions. In the case being considered qO~ qn~ ~ 

The pecul iar i ty  of writing the sys tem in the fo rm (2.1) is the ab- 
sence, in explicit form, of differentiation of the geometr ica l  and stiff- 
ness  pa r ame te r s  of the shell, the direct  way in which the sought quanti- 
ties a re  obtained as a resul t  of the solution, and also the simplici ty in 
specifying the boundary and joining conditions. In sys tem (2.1) thelength 
of the a rc  of the mer id ian  s is taken as the independent variable.  The 
res t  of the sought quantities 0?2, M2) a re  calculated, after  solving the 
basic sys tem (2.1), f rom additional algebraic  relationships.  They have 
the fo rm 

B B. (UOctg0 A-w ~ T~ ~ = pT1 ~ + (l -- ~2) - ~  

M o D R0 
2 = btMi ~ + (i -- V2) __~_0 __~_ ~ictg 0 (2.3) 

In (2.1)-(2.3) we have used the notation 

Uo ~ u i/~o w T1 ~ o /'2 R---V' = -~-,  T: ~ = -~-;;, i'~ = 

Q1 , M i B o  M2o M s R o  D o  
Q t ~  ~ o  Mi~ " ~  D o  ' = D o  ' C~ - -  B o R o  'a 

s ~ _ .  s P n R o  Eoho  E h  R--~-' p , O = ~  B o =  B =  _-'-'~ 
' l - - ~ z ~  ' 1 

Eoho a Eha 
Do = "t2 (t -- #) ' D .~- t2 (t --  ~tz---"-'-~ 

where  ~1 is the angle of rotation of the normal  to the middle surface  of the shell  in the direct ion of the me-  
ridian; h0, h, B o, B, D 0, D a re  the thicknesses,  tensile, and f lexural  s t i ffnesses at the re fe rence  point 0 and 
the current  point s; E 0, E a re  the corresponding moduli of elasticity,  where in the genera l  case  E (s) ~ const 
is possible; R 0 is the re fe rence  radius.  

Fo r  a parabolic lens (Fig, 1) with a constant of parabola  a, it is convenient to take the point at 0 = 0 
as  the re fe rence  point. Here R o = l / 2 a  and then R0/Rl=COS30, R 0 / R 2 = c o s  e, B / ' B 0 = c o s  0, D / D 0 = c o s  3 O, 
[for E(s)=const ] .  In the case where two or  m o r e  shells a re  joined, we can choose a common re ferencepoin t  
for  all of them. In the problem being solved here, where a parabolic shell joins the neck of the lens in the 
f o r m  of a cyl indrical  shell, we have taken the point of the paraboloid at 0 = 0 in the ro le  of such a point. 

The blocks of the ma t r i ces  M+ and X - ,  for  the joint between the cyl indrical  and parabolic  shells, in 
the case  of the chosen vec tors  X 1 and X 2 have the fo rm 

[ s-~ ~176176 i] [.oi~ ~176 i] Mii+= --cos0 sin0 , M~+----- c 0 sin0 
0 0 _ 0 

and Mll-  =M22 +, M22- =Mtl  +. The remaining blocks a re  zero.  The solution of the problem here  was s tar ted 
f rom the right boundary (s k, Ok, rk)- In the ro le  of the left boundary conditions we took the conditions at 
the middle of the cyl indrical  shell, which follow f rom the s y m m e t r y  of the construction.  Here the displace-  
ments  along the u ~ axis, the angle of rotation of the normal  to the middle surface  along the mer id ian  $1, and 
the shear  force  Qi ~ will be zero.  

After  the solution of the sys tem (2.1) and the computation of T 2 and M 2 according to (2.3), the maxi-  
mum s t r e s s e s  in the sect ion a re  determined f rom the relation [3]: 
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Ti~ 6 M i ~  Tu~ 6M~~ 
---- -~ - - ,  ~', ---- (2.4) ~i ~ - -  Rob2 ~ Roa'~ 

in which the minus sign corresponds  to compress ive  s t resses ,  ~nd the plus corresponds  to tension. Since 
there  is acomplex s t r e s s  state in the shells, for  its numerica l  es t imate  we go to a uniaxial equivalent s t r e ss  
state, in accordance with the theory  of maximum she~r s t r e sses ,  according to the e x p r e s s i o n  [6]: 

(Je ~ max  - -  ( Jmin  (2.5) 

where the radial stress, as is usual in the theory of shells, is assumed to be zero. The values of area x 
and ami n are taken from (2.4). 

The stress v~lues are calculated in the following range of parameters of the lens which is character- 
istic for the optical system of the focusing device [i]: current in the lenses 10~. 0.5 mA, length of the lenses, 
L= (50-170) cm, end radius rk=(7-25) cm, neck radius r0= (0.8-3)cm, constant of the parabola a = (0.05-1.5) 
cm -I, thickness of the shell at the point 0 =0 b0= (0.4-2)cm. In Fig. 3 we have presented the distribution, 
along the meridian s, of the stresses (rTi, aT2 , crM2 (curves 1, 2, 3,4, respectively) for a lens with the pa- 
rameters I0=0.5 mA, rk=9.5 cm, r0=1.5 cm, h0=l cm, a =0.404 cm -I. The solid curves are the result of 
numerical integration of Eqs. (2.1), the dashed lines are the result of analytical calculation according to 
(3.1), (3.9). The left-hand boundary of Fig. 3 corresponds to the neck, while the right-hand boundary corre- 
sponds to the flange of the lens. 

A rigid fixing of the ends of the parabolic portion was assumed at the neck and at the flange. In all 
varie nts of the lens considere d the total stress [according to expressions (2.4)] in the zones joining the 
lens with the neck and the flanges turned out to be the largest. At the neck they are the tensile stresses 
on the outer surface of the paraboloid, while at the flange they are the compressive stresses on the inner 
surface; at the same time the former are always considerably higher. When moving away from the fixing 
locations, the overall stresses rapidly decrease. 

The effect of the fixing methods on the stress state was clarified. The following variants were con- 
sidere d: the flange rigidly fixed; displacements along the lens axis allowed; the lens has a preliminary com- 
pression (with respect to the supply of current); an absolutely free boundary (without the flange). 

In the role of the boundary conditions at the neck we took u ~ =w ~ ~I = 0. A calculation showed that in 
the second case the stress state at the neck considerably worsens in comparison with the first. The stresses 
in the fourth variant remained approximately the same as in the second variant. The worsening of the 
stress state in the second and fourth versions in comparison with the first is connected with the fact that in 
the case of the flange being freed the total longitudinal force of the magnetic pressure 104102inrkr0 -i (kgf) 
is balanced by the forces T i and QI only at the neck. (The radial constituent of the force is always self- 
balanced.) Hence, it follows that the first variant is more preferable. The preliminary compression of the 
lens (case three) weakens the stress state at the neck. But here the stability of the lens can worsen. 

Below we present the results of calculations of the maximum equivalent stress ~e* (falling on theneck 
region), dependent on the geometrical parameters a, h0, r 0. In Fig. 4 we have shown the dependence of qe* 
on h 0 for 10= 0.5 mA, rk=7.5 cm, r0=1.5 cm and various values of the parabola constant a (curve 1 corre- 
sponds to a=0.2cm -1,2) a=0.4 cm -I, 3) a=0.6 cm -I, 4) a=0.8 cm -I, 5) a = l c m  -i, 6) a=1.2 cm -i, 7) a= 
1.4 cm-1). 

As follows f rom Fig.  4 [see also expressions (3.1)], the s t r e s s e s  in the case  of a constant current  and 
radius rk decrease  as the pa rame te r  a dec reases  and h 0 increases .  This is connected basical ly with the 
variat ion of the normal  thickness of the shell in the zone of contact with the neck, given by the express ion 
h=h0(1 +4a2r02)-l/2. In accordance  with this expression we should expect an increase  of the s t r e s se s  as the 
neck radius r 0 increases ,  since then h decreases .  But as r 0 increases ,  the magnetic p r e s s u r e  (.~ r0 -2) falls, 
and also the longitudinal constituent of the magnetic p r e s s u r e  decreases ;  as a result  the s t r e s se s  at the 
neck decrease  as its radius increases .  The dependence of the maximum s t r e s se s  on the neck radius is p r e s -  
ented in Fig. 5 for  I0=0.5 mA, rk=9 .5  cm, h• cm, a=0.842 cm -1. 

The transi t ion to h parabolic lens with an axial hole in the neck leads to a dec rease  in the maximum 
s t r e s se s  in the zone of contact between the paraboloids and the neck. F o r  example, fo r  a lens with the pa-  
r amete r  a= 0.1236 cm -1, the thickness of the paraboloid along the axis h0=l  cm, and r0=3 cm, the p resence  
of a hole of radius 2.17 cm in the neck, under the condition that the neck and the paraboloid a re  equally 
s t ressed  at the joint, reduces ae* f rom 8 to 5.9 kg f /mm 2 (the numerical  data are  given in more  detail in 
[51). 
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3. F o r  an a p p r o x i m a t e  ana ly t ica l  so lut ion of the p r o b l e m  we  divide the  s t r e s s  s tate ,  fol lowing fo r  ex-  
ample ,  [3], into a m o m e n t l e s s  s ta te  and a bounda ry  effect .  Put t ing  M 1 =M 2 = Q1 = 0 in (1ol) and taking into a c -  
count (1.2), f r o m  the  f i r s t  two equat ions  of  the s y s t e m  of equat ions (1.1) we obtain 

at,  ~ = t04Io2a (~ho) -1 [i ~ (4a~r~) -1] (ln rkr -1 - -  10-~Io-2F) 
at,  ~ = - -  t04Io~a (rcho) - i  [t + (ln r~r -1 44- i0-410-2F) (4a2r2) -i] (3.1) 

w h e r e  a %~ = T1/h, a o T2 =T2/h ,  and F is the cons tan t  of in tegra t ion  having the  mean ing  of a f o r c e  ac t ing on 
the  shel l  ~hong the axis  f r o m  the s ide  of  the f lange and the neck.  It is  d e t e r m i n e d  f r o m  the boundary  condi-  
t ions  f o r  T1 o r  f o r  the d i sp l a c e m e n t  u, when in tegra t ing  the four th  and the fifth equat ions  of s y s t e m  (1.1), 
with (3.1) taken into account .  In the  c a s e  whe re  the shel l  is  f ixed at both ends, we m u s t  take the solut ion fo r  
the boundary  condi t ions  u=  0 at both  boundar ie s  in the r o l e  of  the m o m e n t l e s s  solution.  The  cons tant  of in-  
t eg ra t i on  is d e t e r m i n e d  as fol lows:  

10-410-2F = [1/~ (t + 2~)(a2rk 2 ~ a2ro 2 -~ lnr~ro -i) 44- 1/2 (l "4- 
+ ~) ln2 r~ro - i  -f- (t + ~t - -  8a4ro 4) (8a2ro~) -1 lnrkr0-11 [a2r~ ~ - -  

- -  a2ro2+ (i + ~) In rkro -1 A- (t A- ~) (8a2ro~) -1 - -  (t ~- ~) (8a~r~)-~] -~ (3.2) 

The  equat ion of the b o u n d a r y  effect  

d~w/dO 4 + k4w = 0, k = [3 (t - -  ~)]'/,R1 (R2h) -~/, (3.3) 

i s  obtained f r o m  the  homogeneous  s y s t e m  (1.1) (Pn = 0), when neg lec t ing  the t e r m s  of o r d e r  (h/R)~/2 . 

The  damped  p a r t  of the solut ion of this equation has  the  f o r m  

w = e -~~ (c 1 sin k0 + c~ cos k0) (3.4) 

H e r e  the m o m e n t s  and the  s h e a r  f o r c e  a r e  connected  with the d i sp l acemen t  w by the r e l a t ions  

M 1  - D d~w M 2 = ~ M 1 ,  Q i -  t dMi (3.5) 
Ri  ~ dO~ ' R i  dO 

In  the c a s e  of c lamping  the m a x i m u m  bending s t r e s s e s  a r e  

ZM, = V 3 / ( 1  --  bd) (ZT,-  ~t~T~) (3.6) 

H e r e  CrTl~ and aT2~ a r e  taken f r o m  the  m o m e n t l e s s  solut ion (3.1) fo r  the c o r r e s p o n d i n g  boundary  of 

t he ' pa rabo lo ida l  p a r t  of the lens  (r= r 0 at the neck  of the lens  o r  r = r  k at the f lange).  S ince  in this  ana lys i s  
the  resu l t an t  fo rce ,  ac t ing  on the shel l  f r o m  the s ide  of the fixing, can have only a r ad ia l  cons t i tuent  (the 
longi tudinal  const i tuent  is taken into account  in the m o m e n t l e s s  solution),  we have  

Qi cos 0 44- Ti~ sin 0 : 0 (3.7) 

and in the r eg ion  of the boundar i e s  we  mus t  take  into account  the  f o r c e  TI k which is s u p p l e m e n t a r y  to the 
m o m e n t l e s s  f o r c e  T 1. The  c o r r e s p o n d i n g  c o r r e c t i o n  to the m o m e n t l e s s  s t r e s s  aT1~ d i r ec t ly  on the boundary  
equals  

ZT~ = I/~ (2aho)V, [3 (i - -  ~t~)] '/' ZM, CO'S 2 0/s in  0 (3.8) 

w h e r e  aM1 and the angle  0 a r e  taken  on the  boundar i e s  of the shell .  

The  to ta l  s t r e s s e s  on the bounda r i e s  of the shel l  equal  

~i = :i: ~ ,  + ~r, ~ +  ~r~, ~ : ~ i  (3.9) 

where the upper sign corresponds to the outer surface of the shell, while the lower corresponds to the inner 
surface. 

From the analysis of the limits of applicability of the approximate solution [3], for the parabolic shells 
�9 being cons ide red  we can obtain  the c r i t e r i o n  

t /cos  s 0 > [3 (1 - -  ~t~)] -'h [ho (2ar~)-l] '/~ (3.10) 

F o r  she l l s  which sa t i s fy  c r i t e r i o n  (3.10), an ana ly t i ca l  so lut ion should be comple t e ly  appl icable  and 
re l iab le .  This  is c o n f i r m e d  by c o m p a r i s o n  with the r e s u l t s  of n u m e r i c a l  so lut ion of the tota l  m o m e n t  s y s -  
t e m  of equat ions  (1.1) (see, f o r  example ,  F ig .  3). 

The  au thors  thank L. I. Balabukh and A. A. Samoi lov  fo r  the consul ta t ion  and d i scuss ion .  
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