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The paper investigates the stress—strain state of an axisymmetrically loaded shell which
arises when a strong electric current flows in it. The shell with current is an element of a
system intended for focusing T and K mesons in neutron experiments. The problem is solved
by numerical integration on a computer of equations of the theory of shells by the two-sided
matrix run-through method, and also by an approximate analytical solution. The algorithm
being applied can be used to calculate an arbitrary shell of revolution of variable thickness.
The results thus obtained are discussed.

In investigations of high-energy physics, systems of current-carrying shells are used to form particle
beams. Such systems usually constitute a collection of shells of revolution subjected to impulsive electric
current of hundreds of kiloamperes.

In [1] a system consisting of current parabolic lenses [2] is proposed for the focusing of # and K me~
sons in a neutron experiment. For the parameters of this system the pressure of the magnetic field of the
current amounts to several hundreds of atmospheres, and in the case of a small thickness of the shell the
mechanical stresses can be very high.

A parabolic lens in the general case is a body of revolution with a variable wall thickness (Fig. 1)
loaded by an axisymmetric magnetic pressure which is varying with time and is inhomogeneous in space.
The lens consists of two paraboloids of revolution 1, joined at the vertices via a constructional neck 2,
flanges 3, and a coaxial current carrier 4 with current I, In the case being considered the thickness of its
walls h varying over the lens is considerably less than the characteristic radius of curvature R of the sur-
face, while the frequency of natural vibrations of the lens exceeds the frequencyof current variation. Inview
of this, for the description of the stress—strain state we will proceed from the system of equations of the
theory of shells of revolution for a static nature of the load (see, for example, [3]).

An exact analytical solution of the system is known only for certain particular types of shells [4].
solve the problem, two methods are used below: a mumerical solution of the complete system of equatlons
of the shell theory, and an approximate analytical solution.

1. The system of equations for a shell of revolution loaded by anaxisymmetric pressure has the form {3]
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where E is modulus of elasticity; p is Poisson's ratio; Ty, Ty, My, M, are forces and moments per unit
length,

h'g hia ) h/2 hi2
To=§ ods, To= | adt, M= { ofdt, My= | stdt
—h. 2 —h/2 —h(2 —h{2

g1 and g, are the meridional and circumferential stresses; £ are the coordinates across the thickness of

the shells from its middle surface; (¢ =h/2 corresponds to the inner surface of the shell, £ =—h/2—ee cor-
responds to its outer surface); u and w are the displacements of points of the middle surface in the merid-
ian and normal directions; Q, is the shear force per unit length; Ry and R, are the radii of curvature of the
middle surface; ¢ is the angle coordinate along the meridian. The positive directions of the forces, moments,
and displacements are shown on the element of the shell (Fig. 2); p,, is the pressure of the magnetic field,
normal to the outer surface of the shell; it is given by the expression

pn = 1081 / 2m)1 2r—2 1.2)

pyp in kgf/cm?, I, is the amplitude value of the current in mA, r is the current radius of the parallel of the
outer surface of the shell in centimeters.

The problem can be reduced to the solution of six ordinary differential equations with variable coef-
ficients in the case of two~point boundary conditions — with three on each edge of the paraboloidal portion
of the lens. For the numerical solution of the boundary-value problem whose homogeneous differential equa-
tions have, along with decreasing solutions, rapidly increasing solutions (as a rule, problems of the shell
theory belong to them), we use the run-through method. One of the possible and most effective variants of
it — the two-sided matrix run-through method {5, 6] — was used to solve the given problem.

The essence of the method consists of the following, Thetotal vector X of 2n sought functions, character-
izing the state of an arbitrary section of the system, is divided into two vectors X; and X, with n functions
in each. At each point s of the interval of integration (s¢, si), between the vectors X, and X, we can find two
linear relations

Xils) = Li(s)Xo(s) + Ru(s) (1 =1,2) (1.3)

where Lj(s) are square (nx n) matrices, and Rj(s) are vectors of n coefficients. kj(s) and Rj(s) are deter-
mined by integration from syto sy (ds > 0,i=1) andfrom s to sy (ds < 0, 1 =2) of the corresponding differential -
equations, obtained, for example, in [7] for a variant of one-sided run-through method, with the initial con-
ditions following from the fixing conditions of the edges. By this the left and right boundary conditions are
transferred to all points s of the interval of integration, with the geometry of the portions, respectively, on
the left and right of s and the external load applied to these sections taken into account. In this manner the
direct run-through (i=1) and reverse run-through (i=2) are accomplished.

The physical meaning of L; and R; depends on the choice of the vectors X; and X,. Thus, for i=1,
if X, is a displacement vector and X, is the vector of internal force quantities, then Iy is a flexibility matrix
of the part of the system from s, to s, while R; are displacements of the sections caused by the load applied
on the left from it. Conversely, if X; is a vector of force quantities and X, is a displacement vector, then
L, is a stiffness matrix, while R are the force quantities in the section s caused by the load applied on the
left of s. In the case of a mixed content of the vectors X; and X, different components of the matrix L, and
the vector Ry will have a different physical meaning.

The choice of the vectors X, and X, is determined by the fixing conditions of the boundary s=s; from
which we start the solution of the problem; in particular, the n functions specified on this boundary are in-
cluded in the X; vector. During the reverse run-through the content of the vectors X; and X, remains the
same, since after the forward run-through to the boundary s=sy all 2n sought functions are determined.
For the reverse run-through we can formally use in the role of initial condition those n conditions of them
which for s=si completely define the vector X;. A simultaneous solution of Eqs. (1.3) obtained during the
direct run-through (i=1) and the reverse run-through (i=2) gives the sought values of X, (s) and X, (s) at any
point s of the interval (s;, si).
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We next consider in the general form an application of the given method for the calculation of com-
posite constructions; this is necessary for the calculation of joined shells of revolution. We assign, in the
zone joining the two parts, the index 1 to the left part and the index 2 to the right part of them (upper indices).
Then the joining conditions of the two parts can be represented in the form

M+XW = X® (.4)
M-X@ = XM (1.5)

where X{1) and X @) are the complete (2n) vectors of state of the joining section; M and M~ are square
(2nx 2n) transformation matrices. The expressions (1.4) and (1.5) constitute the equations of equilibrium
of an element of the joint and the continuity of straing. It is obvious that

MM-=MM*=1 1.6)
where I is a unit (2nx 2n) matrix.
Carrying out a forward run~through, we have at the joint, for the part 1, the relation
X = LOX,® L RO .7

which must be transformed by means of (1.4) or (1.5) into
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X,® = L, X,® + R® (1.8)

for the part 2. The transformation (1.4) is written in the form
My X, ® 4 My X,® = X, My X, ® 4 My X, = X, @ @€.9)
where Mik+ are square (nx n) blocks in the matrix M*, Substituting (1.7) into (1.9), we obtain
X,® — [My Le® -+ Myg™] Moy La® 4 Mao™ 17X - My Ry — My Le® 4 M) [M, L ® -+ M, 1 MR (L.10)
A comparison of (1.10) with (1.9) gives
® = My L 4 My ] Mo L™ 4+ My,
R,® —- Myt — LI(Z)MH*] R,Y (1.11)

If we use the joining conditions in the form (1.5), then for Li(z) and Ri(z) we have

Ly ® = — [Mn— - L1 )M 1-]—1 [Mm—— Ll(‘l)Mn_]
R, @) _ =My — Ll( )M ]—1 Rl(l) (1.12)
where M~ are square (ax n) blocks in the matrix M~. The expressions for Lz(i) and Rz(i) for transition
from the part 2 to the part 1 during the reverse run-through can be obtained analogously, or from expres-
sions (1.11) and (1.12), replacing the index of forward run-through 1 of Lj and R by the index of reverse
run-through 2 (lower indices). We obtain

L = — [Myy* — LMy 17 [Myy" — Lo®M,,7

R2(1) My, o L2(2)M +1—1 R, (2) (1.13)
(1) [“11~L9 + M,y 100 [\/121>L2(2) 4 My~ ]—-1
R," = [M;;” — LM,y ] R,® (1.14)

From expressions (1.11)-({1.14) we see that for L, and R, during the forward and reverse run-through
we can use either expressions jofidentical form, whose blocks M; of the same term belong to different,
mutually inverse matrices M+ and M~, or expressions of different form, but with the use of blocks of only
one of the matrices M+ or M~ for both passages. By means of relations (1.11)-(1.14), by the method of two-
sided run-through, we can calculate constructions formed from an artibtrary numer of joined parts.

Thus, in the method of two-sided matrix run-through the solution of the original boundary-value prob-
lem is reduced to the solution of four Cauchy problems for X (s), Ry (s) and L,(s), R, (s), which are solvable
in pairs on the left and on the right of the interval (s;, sk) with the corresponding initial conditions. No
rapidly increasing functions will arise in any of the problems; this can be shown in each concrete case.

The advantage of the method of two-sided run-through in comparison with the method of usual run~
through [7] consists of the fact that the differential equations for Lj and Ry (i=1, 2) are integrated on the
left and on the right of the interval (sq, si) independently; therefore, the coefficient matrices L; and R; are
not stored on each step of integration, but only at the points for which we have to obtain the solution X;, X,.
As a result, the volume of the memory of the computer being used is substantially reduced.

2. To realize the method just described, programs were set up which were suitable for the calcula-
tions of an arbitrary shell of revolution of variable thickness, and shells joined together. The programs
were written in FORTRAN for a BESM~6 computer. The differential matrix equations for Lj and R{ were
integrated by the Runge—Kutta method. The initial system of equations (1.1), transformed into a fundamen-
tal system of six differential equations of the first order (axisymmetric problem, n=3) in a mixed form,
when brought to a dimensionless form is written as

du® B R R

d—’:.,=T1 ——Bi——upﬁ—ctge——w( ‘-}- T:')

dw® R a9 o D

d':" =0 +u’ R: ’ dsl =M, “i"‘ﬁ]pv Gtge
A T B g6+ 0y 1— o) B (R P ororn pupd — 2)2—(——R°>thg9——q°
das® _—1(_M)—}E'Cg+01—+u(—p,)3 R g 13 Bo \ Rz 9
dQr® o B [Ro\2 o B [ R R
dQs: = — 1°R° ctg6—T74° <%+u§_;>_u(1_92)70<32)Gtge_w(l"l‘?)}?ﬁ(ﬁ;} +q.

D 2
d;‘j: = — My (1——u) 7ootgd+ 0Y 02 + O (1 — 1) 5 ( Z)ctgﬂe (2.1
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24 7 7 or in the matrix form
~ 2
£, J\\\&\ dX /ds* =FX + G @.2)
= N R
B z\\§ 4 In (2.2) X is a complete (2n=6) vector of sought functions, with
L7/ A RN \k\ w Ty
\\\ Xi=w |, X,=|0Q
ﬂ \S Iﬁ'l . AMIO
o7 a8 12 hy,cm
Fig. 4 where ¥ is the matrix of variable coefficients, and G is the vector of
g load functions. In the case being considered dg°=0, 94,°=pp°.
The peculiarity of writing the system in the form (2.1) is the ab-
4 67, kgf/mm? sence, in explicit form, of differentiation of the geometrical and stiff-
\ i ? ness parameters of the shell, the direct way in which the sought quanti-
2 ties are obtained as a result of the solution, and also the simplicity in
\ specifying the boundary and joining conditions. In system (2.1) thelength
\ of the arc of the meridian s is taken as the independent variable. The
1 <~ rest of the sought quantities (T, M,) are calculated, after solving the
\ basic system (2.1), from additional algebraic relationships. They have
” the form
a8 12 16  Z0r,cm
o __ [+ B Ry o o
Fig. 5 Ty" = ply" + (1 — p) 5 - W cigb 4 w)
o o o D H '
M,° = pM, +(1—u2)ﬁ7{2—ﬁlctg9 (2.3)
In (2.1)-(2.3) we have used the notation
o o W ° Ty o_ T2
u = R w =R T1 =B’ 7, = By
o_ & o MiRo MaRo D
=% M= Mi=-F%~, & =gps
o _ 8 o Pufly Eoho Eh
S =T P =g BU:‘i—_pﬁ" B T—ut
D, = Eoho? Eh3
1}

ThRE-w YT RI—m

where .4; is the angle of rotation of the normal to the middle surface of the shell in the direction of the me-
ridian; hy, h, By, B, Dy, D are the thicknesses, tensile, and flexural stiffnesses at the reference point 0 and
the current point s; Ej, E are the corresponding moduli of elasticity, where in the general case E (s) = const
is possible; Ry is the reference radius.

For a parabolic lens (Fig. 1) with a constant of parabola «, it is convenient to take the point at 9 =0
as the reference point. Here Ry=1/2a and then Ry/R;=cos®9, Ry/R,=cos g, B/B;=cos 0, D/D,=cos’ ¢,
[for E(s)=const]. In the case where two or more shells are joined, we can choose a common reference point
for all of them. In the problem being solved here, where a parabolic shell joins the neck of the lens in the
form of a cylindrical shell, we have taken the point of the paraboloid at §=0 in the role of such a point.

The blocks of the matrices M+ and M~, for the joint between the cylindrical and parabolic shells, in
the case of the chosen vectors X, and X, have the form

sin® cos® O sin® —cos® O
M "= | —cos® sinf 0], My"=]cosd sin® 0
0 0 1 0 0 1

and My~ =M,,", M,,~ =M ;*. The remaining blocks are zero. The solution of the problem here was started
from the right boundary (s, 9k rk). In the role of the left boundary conditions we took the conditions at
the middie of the cylindrical shell, which follow from the symmetry of the construction. Here the displace-
ments along the u® axis, the angle of rotation of the normal to the middle surface along the meridian 4, and
the shear force Q;° will be zero.

After the solution of the system (2.1) and the computation of T, and M, according to (2.3), the maxi-
mum stresses in the section are determined from the relation [3]:
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T1°Bo 8M1°Dy _ T3°By 6M2° Dy
Op= —5— =+ Bz ' ST TR =+ Rolt 2.4)

in which the minus sign corresponds to compressive stresses, and the plus corresponds to tension. Since
there is acomplex stress state in the shells, for its numericel estimate we go to a uniaxial equivalent stress
state, in accordance with the theory of maximum shear stresses, according to the expression [6}:

G, = max — Omin (2-5)

where the radial stress, as is usual in the theory of shells, is assumed to be zero. The values of Cmax
and 6.,y are taken from (2.4).

The stress velues are calculated in the following range of parameters of the lens which is character-
istic for the optical system of the focusing device {1]: current in the lenses Iy~ 0.5 mA, length of the lenses,
L= (50-170) cm, end radius rk=(7-25) cm, neck radius ry= (0.8-3)cm, constant of the parabola a = (0.05-1.5)
em™!, thickness of the shell at the point §=0 by=(0.4-2)cm. In Fig. 3 we have presented the distribution,
along the meridian s, of the stresses O Oy OM, (curves 1, 2, 3, 4, respectively) for a lens with the pa~
rameters Ij=0.5 mA, rk=9.5 cm, ry=1.5 cm, hy=1 cm, @ =0.404 cm™'. The solid curves are the result of
numerical integration of Egs. (2.1), the dashed lines are the result of analytical calculation according to
(3.1), (3.9). The left-hand boundary of Fig. 3 corresponds to the neck, while the right-hand boundary corre-

sponds to the flange of the lens.

A rigid fixing of the ends of the parabolic portion was assumed at the neck and at the flange. In all
varients of the lens considered the total stress [according to expressions 2.4)] in the zones joining the
lens with the neck and the flanges turned out to be the largest. At the neck they are the tensile stresses
on the outer surface of the paraboloid, while at the flange they are the compressive stresses on the inner
surface; at the same time the former are always considerably higher. When moving away from the fixing
locations, the overall stresses rapidly decre ase,

The effect of the fixing methods on the stress state was clarified. The following variants were con-
sidered: the flange rigidly fixed; displacements along the lens axis allowed; the lens has a preliminary com-
pression (with respect to the supply of current); an absolutely free boundary (without the flange).

In the role of the boundary conditions at the neck we took u°=w°=2;=0. A calculation showed that in
the second case the stress state at the neck considerably worsens in comparison with the first, The stresses
in the fourth variant remained approximately the same as in the second variant. The worsening of the
stress state in the second and fourth versions in comparison with the first is connected with the fact that in
the case of the flange being freed the total longitudinal force of the magnetic pressure 10* 2Inrir,™ (kgf)
is balanced by the forces T; and @; only at the neck. (The radial constituent of the force is always self-
balanced.) Hence, it follows that the first variant is more preferable. The preliminary compression of the
lens (case three) weakens the stress state at the neck. But here the stability of the lens can worsen.

Below we present the results of calculations of the maximum equivalent stress gg* (falling on theneck
region), dependent on the geometrical parameters a, hy, ry. In Fig. 4 we have shown the dependence of g*
on hy for [;=0.5 mA, rg=7.5 cm, ry=1.5 cm and various values of the parabola constant ¢ (curve 1 corre-
sponds tio a=0.2cm™%,2)a=04 cm™, 3)a=0.6 cm™!, 4)2=0.8 cm™!, 5)a=1 cm™, 6)a=1.2 cm™, 7)a=
1.4 cm™).

As follows from Fig. 4 [see also expressions (3.1)], the stresses in the case of a constant current and
radius rk decrease as the parameter a decreases and h; increases. This is connected basically with the
variation of the normal thickness of the shell in the zone of contact with the neck, given by the expression
h=h,(1 +4a2~r02)'1/ 2, In accordance with this expression we should expect an increase of the stresses as the
neck radius ry increases, since then h decreases. But as rj increases, the magnetic pressure (~ ro'z) falls,
and also the longitudinal constituent of the magnetic pressure decreases; as a result the stresses at the
neck decrease as its radius increases. The dependence of the maximum stresses on the neck radius is pres-
ented in Fig. 5 for I;=0.5 mA, rk=9.5 cm, hy=1 cm, @=0.842 cm™,

The transition to a parabolic lens with an axial hole in the neck leads to a decrease in the maximum
stresses in the zone of contact between the paraboloids and the neck. For example, for a lens with the pa-
rameter a=0.1236 cm™!, the thickness of the paraboloid along the axis hy=1 cm, and ry=3 cm, the presence
of a hole of radius 2.17 cm in the neck, under the condition that the neck and the paraboloid are equally
stressed at the joint, reduces og* from 8 to 5.9 kgf/mm? (the numerical data are given in more detail in

[5D.
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3. For an approximate analytical solution of the problem we divide the stress state, following for ex-
ample, [3], info 2 momentless state and a boundary effect. Putting M;=M,=Q,;=0in (1.1) and taking into ac-
count (1.2), from the first two equations of the system of equations (1.1) we obtain

or° = 101 2a (stho) -t [ + (4a%®)- (In rpr—t — 10-41,~2F)
o1 = — 104 2a (who)~* [1 + (Anryr=* 4 10-41,72F) (4a°r) 7] (8.1

where oq°= Ty/h, o °=Ty/h, and F is the constant of integration having the meaning of a force acting on
the shell élong the axfs from the side of the flange and the neck. It is determined from the boundary condi-
tions for T, or for the displacement u, when integrating the fourth and the fifth equations of system (1.1),
with (3.1) taken into account. In the case where the shell is fixed at both ends, we must take the solution for
the boundary conditions u= 0 at both boundaries in the role of the momentless solution. The constant of in-
tegration is determined as follows:

10-4=2F = [Yy (1 + 2p) (a?ry® — aPr + lorgr,™) + Y, (1 4+
+ p) n2 rryt o+ (1 4 p— 8a'ryt) (8a®ry®) ! lnryr, 1l [a%r,2 —

— afro (1 + ) lnrre™ + (0 4 ) Bare®) ™ — (1 + 1) (8a®ry®) -1 (3.2)
The equation of the boundary effect
dw/dot + Kw =0, k=[3(1 — p})IR, (Rph)™": 3.3)
is obtained from the homogeneous system (1.1} (p,=0), when neglecting the terms of order (h/R)i/ 2,

The damped part of the solution of this equation has the form

w = ¢ (¢, sin kKO + ¢, cos kO) (3.4)
Here the moments and the shear force are connected with the displacement w by the relations
_D @ 1 M (3.5)
My=gzgw, Ma=pM Q= 5~

In the case of clamping the maximum bending stresses are
sar, = V37 (T — 1) (o1, — por) (3.6)
Here 0'T1° and o, ° are taken from the momentless solution (3.1) for the corresponding boundary of

the paraboloidal part of the lens (r=r; at the neck of the lens or r=r at the flange). Since in this analysis
the resultant force, acting on the shell from the side of the fixing, can have only a radial constituent (the
longitudinal constituent is taken into account in the momentless solution), we have

Qrcos 0 ++ T)ksinf =0 8.7

and in the region of the boundaries we must take into account the force Tik which is supplementary to the
momentless force Ty. The corresponding correction to the momentless stress °'T1° directly on the boundary
equals

ork =Y, (2aho)'/. [3 (4 — p2)I¥s o, cos? O/ sin O (3.8)
where o-M1 and the angle ¢ are taken on the boundaries of the shell.
The total stresses on the boundaries of the shell equal
6, = = Oy, + o7 + o1, 0, = poy (3.9)
where the upper sign corresponds to the outer surface of the shell, while the lower corresponds to the inner
surface.

From the analysis of the limits of applicability of the approximate solution [3], for the parabolic shells
. being considered we can obtain the criterion

1/ cos? 6 > [3 (1 — p2)1-* [hq (2ar?) 1] (3.10)

Tor shells which satisfy criterion (3.10), an analytical solution should be completely applicable and
reliable. This is confirmed by comparison with the results of numerical solution of the total moment sys-
tem of equations (1.1) (see, for example, Fig. 3).

The authors thank L. I, Balabukh and A. A. Samoilov for the consultation and discussion.
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